Feature Extraction for Emotion Recognition in Speech with Machine Learning Algorithm
نویسندگان
چکیده
منابع مشابه
Feature Transfer Learning for Speech Emotion Recognition
Speech Emotion Recognition (SER) has achieved some substantial progress in the past few decades since the dawn of emotion and speech research. In many aspects, various research efforts have been made in an attempt to achieve human-like emotion recognition performance in real-life settings. However, with the availability of speech data obtained from different devices and varied acquisition condi...
متن کاملFeature Extraction and Selection in Speech Emotion Recognition
Speech Emotion Recognition (SER) is a hot research topic in the field of Human Computer Interaction (HCI). In this paper, we recognize three emotional states: happy, sad and neutral. The explored features include: energy, pitch, linear predictive spectrum coding (LPCC), Mel-frequency spectrum coefficients (MFCC), and Mel-energy spectrum dynamic coefficients (MEDC). A German Corpus (Berlin Datab...
متن کاملMachine Learning Approach for Emotion Recognition in Speech
This paper presents a machine learning approach to automatic recognition of human emotions from speech. The approach consists of three steps. First, numerical features are extracted from the sound database by using audio feature extractor. Then, feature selection method is used to select the most relevant features. Finally, a machine learning model is trained to recognize seven universal emotio...
متن کاملAnthropomorphic feature extraction algorithm for speech recognition in adverse environments
Speech recognition engines should remain reasonably accurate in adverse environments in order to find their ways from laboratories towards applications. However the human auditory system has been proven to be a versatile tool, which is capable of outperforming the known artificial algorithms in their target environments. Recent advances in psychoacoustics and auditory physiology pointed to the ...
متن کاملLearning Corpus-Invariant Discriminant Feature Representations for Speech Emotion Recognition
As a hot topic of speech signal processing, speech emotion recognition methods have been developed rapidly in recent years. Some satisfactory results have been achieved. However, it should be noted that most of these methods are trained and evaluated on the same corpus. In reality, the training data and testing data are often collected from different corpora, and the feature distributions of di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Trends in Computer Science and Engineering
سال: 2020
ISSN: 2278-3091
DOI: 10.30534/ijatcse/2020/116942020